Search results for " ephemerides"

showing 3 items of 3 documents

Discovery of periodic dips in the light curve of GX 13+1: the X-ray orbital ephemeris of the source

2014

The bright low-mass X-ray binary (LMXB) GX 13+1 is one of the most peculiar Galactic binary systems. A periodicity of 24.27 d with a formal statistical error of 0.03 d was observed in its power spectrum density obtained with RXTE All Sky Monitor (ASM) data spanning 14 years. Starting from a recent study, indicating GX 13+1 as a possible dipping source candidate, we systematically searched for periodic dips in the X-ray light curves of GX 13+1 from 1996 up to 2013 using RXTE/ASM, and MAXI data to determine for the first time the X-ray orbital ephemeris of GX 13+1. We searched for a periodic signal in the ASM and MAXI light curves, finding a common periodicity of 24.53 d. We folded the 1.3-5 …

PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)InfraredEpoch (astronomy)media_common.quotation_subjectSpectral densityFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsLight curveEphemerisOrbital periodPeriodic functionSettore FIS/05 - Astronomia E AstrofisicaSpace and Planetary ScienceSkystars: neutron stars: individual: GX 13+1 X-rays: binaries X-rays: stars ephemeridesneutron stars: individual: GX 13+1 X-rays: binaries X-rays: stars ephemerides [stars]Astrophysics - High Energy Astrophysical Phenomenamedia_common
researchProduct

Accretion onto Neutron Stars: spectral and timing investigation of Low Mass X-ray Binaries

2021

Settore FIS/05 - Astronomia E Astrofisicaneutron stars X rays X rays binaries accretion accretion disks eclipses ephemerides stars: individual: 4U 1702-429 stars: individual: Scorpius X-1 stars: individual: X 1822-371 stars: individual: GX 17+2
researchProduct

New orbital ephemerides for the dipping source 4U 1323-619: Constraining the distance to the source

2016

4U 1323-619 is a low mass X-ray binary system that shows type I X-ray bursts and dips. The most accurate estimation of the orbital period is 2.941923(36) hrs and a distance from the source that is lower than 11 kpc has been proposed. We aim to obtain the orbital ephemeris, the orbital period of the system, as well as its derivative to compare the observed luminosity with that predicted by the theory of secular evolution. We took the advantage of about 26 years of X-ray data and grouped the selected observations when close in time. We folded the light curves and used the timing technique, obtaining 12 dip arrival times. We fit the delays of the dip arrival times both with a linear and a quad…

neutron X-rays: binaries X-rays: stars ephemerides stars: individual: 4U 1323-619 [stars]010504 meteorology & atmospheric sciencesAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesContext (language use)AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsEphemeris01 natural sciencesLuminositySettore FIS/05 - Astronomia E Astrofisica0103 physical sciences010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)stars: neutron X-rays: binaries X-rays: stars ephemerides stars: individual: 4U 1323-619Astronomy and AstrophysicsLight curveOrbital periodGalaxyNeutron starSpace and Planetary ScienceAstrophysics::Earth and Planetary AstrophysicsLow MassAstrophysics - High Energy Astrophysical Phenomena
researchProduct